High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws
نویسندگان
چکیده
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملHigh-Order Central Schemes for Hyperbolic Systems of Conservation Laws
A family of shock capturing schemes for the approximate solution of hyperbolic systems of conservation laws is presented. The schemes are based on a modified ENO reconstruction of pointwise values from cell averages and on approximate computation of the flux on cell boundaries. The use of a staggered grid avoids the need of a Riemann solver. The integral of the fluxes is computed by Simpson’s r...
متن کاملHigh-order central-upwind schemes for hyperbolic conservation laws
We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput., 23 (2001), pp. 707–740]. Similarly to the staggered central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality, and robustness. At the sam...
متن کاملHigh Resolution Schemes for Hyperbolic Conservation Laws
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2013
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-013-9787-8